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Abstract

With the development of heterologous expression of recom-
binant protein applied in many fields, the solubility of pro-
tein attracts people’s attention, as poorly soluble proteins may
form insoluble aggregates which can reduce the yield of ex-
pressed target proteins. Therefore, we propose AlphaSolu,
a AlphaFold-aware framework to predict protein solubility
with high performance. Unlike most approaches in the past,
AlphaSolu explores the information in 3D structure instead
of one-dimensional sequence based on graph neural network,
where amino acid sequence representation and contact map
reconstruct a graph as the input. It catches spatial informa-
tion which may contain abundant solubility information about
protein. Experiments indicates the framework we proposed
achieves higher accuracy and Matthew’s correlation coeffi-
cient outperforming the state-of-the-art approaches, that en-
ables mass production of heterologous expressions on an in-
dustrial scale. It is worth mentioning that we wrap it into an
end-to-end protein solubility prediction framework and users
only need raw sequences to gain the results.

Introduction
It is widely known that genetic engineering has an enormous
impact on all aspects of human life, not only biomedicine
but also agriculture, environmental conservation. A vital but
challenging step in the procedure of genetic engineering is
heterologous protein expression. Heterologous protein ex-
pression indicates transferring a gene from one organism to
another that we call host organism, typically a microorgan-
ism like bacteria, yeast, or mammalian cells. The foreign
gene is inserted into the host organism’s DNA, enabling it
to produce the desired protein. This process is crucial in
biotechnology and research for producing specific proteins.

However, solubility is a crucial property in heterologous
protein expression, significantly impacting the success of
protein expression, purification, and downstream applica-
tions. Poorly soluble proteins often form insoluble aggre-
gates or inclusion bodies which reduces target protein yield.
Therefore, they requires more purification steps to achieve
the desired purity and yield. In contrast, soluble proteins can
be more efficiently purified using simpler approaches like
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affinity chromatography, thus resulting in higher protein pu-
rity. If an approach predicting protein solubility based on
amino acid sequences is available, we can directly select the
soluble proteins for research. It leads to higher yields and
purity in heterologous protein expression, facilitating large-
scale industrial screening and production.

Previous work for predicting protein solubility were based
on statistical properties of amino acid sequences. Some
work(Wilkinson and Harrison 1991; Davis et al. 1999) re-
lied on the average charge, the relative quantities of four
types of residues (Asp, Glu, Lys, and Arg), and their cor-
responding turn-forming content. Besides, experimental ob-
servations revealed significant differences between soluble
and insoluble proteins in terms of hydrophobic segments,
glutamine content, negatively charged residues, and the per-
centage of aromatic amino acids(Christendat et al. 2000).
And the accuracy of predicting solubility using these statis-
tical features was approximately 65%. However, such ap-
proaches have significant limitations. They rely on a deep
understanding of protein biology and observations of sol-
uble and insoluble proteins, and need to mannally extract
discriminative features, which is relatively inefficient.

How to explore the solubility information in proteins and
efficiently extract the corresponding features to achieve high
accuracy is still a challenging question. On one hand, past
researchers(Smialowski et al. 2007; Rawi et al. 2018; Khu-
rana et al. 2018; Wu and Yu 2021) preferred to use sequence-
based features to predict solubility which is proved limited.
More and more recent work(Chen et al. 2021; Yuan et al.
2022; Bryant, Pozzati, and Elofsson 2022; Song et al. 2022)
indicate proteins of high-dimensional structure may contain
a wealth of additional solubility information. For example,
3D structure includes the positions of individual atoms and
the intricate folding patterns. On the other hand, with the
rise of deep learning techniques, automated feature extrac-
tion becomes possible.

As mentioned above, our goal is to design a protein solu-
bility prediction with high accuracy using high-dimensional
features of proteins, especially three-dimensional ones. The
introduction of AlphaFold(Jumper et al. 2021), which is
a model developed by DeepMind for predicting the three-
dimensional structure of proteins, has injected new vitality
into research related to structural proteins. Therefore, we
propose a deep framework AlphaSolu, using 3D structure



Figure 1: The Framework of AlphaSolu.

predicted by AlphaFold based on graph neural network, as
shown in figure 1. In a nutshell, our contributions are three-
fold.

• We propose AlphaSolu, a AlphaFold-aware framework
to predict protein solubility catching spatial information
about protein, different from many previous sequenced-
based approaches.

• We use graph neural network to automatically extract
spartial features, where amino acid sequence represen-
tation and contact map reconstruct a graph as the input.

• By implementing AlphaSolu and other benchmarks, re-
sults demonstrate ours outperforms others and achieves
higher accuracy under robustness and reliability.

Related Work
A number of work use machine learning techniques to
predict protein solubility. Smialowski et al. (2007) intro-
duced a machine learning-based solubility prediction sys-
tem, PROSO, consisting of a two-level layers with a Sup-
port Vector Machine (SVM) and a Naive Bayesian classi-
fier, and it could achieve 72% accuracy with the data in
TargetDB. Subsequently, Smialowski et al. (2012) improved
their previous work and proposed PROSO II achieving ac-
curacy up to 75.4%. Han, Wang, and Zhou (2019) applied
support vector machine techniques to solubility prediction,
classifying solubility prediction as a classification problem
instead of a regression one. PaRSnIP(Rawi et al. 2018) and
SoluProt(Hon et al. 2021) employed gradient boosting ma-
chine to predict protein solubility. The above work based on
machine learning techniques need manually extract features
of amino acid sequences.

Due to the ability of neural networks to automatically
learn information embedded in amino acid sequences, many

subsequent works have employed neural networks to pre-
dict protein solubility. DeepSOL(Khurana et al. 2018) used
two-dimensional information as inputs to a convolutional
neural network, with one dimension representing sequences
and the other representing structures. Sequence information
included one-dimensional amino acid characteristics, such
as sequence length, molecular weight, net charge, aliphatic
index (AIs), grand average of hydropathy (GRAVY), and
others. Structural one was derived from high-dimensional
protein structure features like SS3 and SS8 predicted by
SCRATCH(Cheng et al. 2005) using amino acid sequences.
This approach achieved accuracy up to 77%, marking
a significant improvement over previous approaches. EP-
SOL(Wu and Yu 2021) also utilized a convolutional neu-
ral network for feature extraction, but compared to Deep-
SOL, it included a broader range of feature dimensions. Ad-
ditionally, it used a sliding window model for extracting raw
amino acid sequences, resulting an accuracy value of 79%
and a Matthews correlation coefficient (MCC) value of 0.58.

GraphSOL(Chen et al. 2021) stood as the first protein
solubility prediction using graph convolutional neural net-
work(GCN), the node features of which included amino acid
encodings from Blosum62(Mount 2008), physical-chemical
properties, evolutionary information, and predicted struc-
tural properties. Edge features were derived from contact
maps predicted by SPOT-Contact(Hanson et al. 2018). Al-
though graph convolutional neural networks excel in utiliz-
ing spatial information, GraphSOL has two potential neg-
ative effects. As it relies on high-dimensional structural
features predicted by SPIDER3 and SPOT-Contact, they
may not be entirely accurate. Additionally the extracted
high-dimensional structural features are limited to two-
dimensional structures, while higher-dimensional structures
such as three-dimensional structures hold untapped solubil-



Name Amino acid sequence hydrolysis degree
aaeX MSLFPVIVVFGLSFPPIFFELLLSLAIF 0.34
aas MLFSFFRNLCRVLYRVRVTGDTQALKGERVLIT 0.07
aat MRLVQLSRHSIAFPSPEGALREPNGLLALGGDLSP 0.08

Table 1: Original amino acid sequence data format.

ity information.

Proposed Solution
Data Preparation
Amino Acid Sequence The original training set contain-
ing amino acid sequences is derived from GraphSol(Chen
et al. 2021), which is collected by the eSOL database(Niwa
et al. 2009). This database contains a comprehensive set
of Escherichia coli protein solubility data, corresponding to
gene names in the NCBI database. A total of 3144 data were
initially obtained, with a balanced distribution of positive
and negative samples (1:1), ensuring there were no issues
with class imbalance. The dataset were performed to prepro-
cess to avoid the repeating sequences and finally we gained
3140 sequences with corresponding solubility. The format
of amino acid sequence data is illustrated in Table 1.

Three-dimensional Structure AlphaFold(Jumper et al.
2021) developed by the DeepMind to predict the three-
dimensional structure of proteins is currently open-source.
Taking the 3140 amino acid sequences obtained above as in-
put, it outputs the corresponding PDB files for each amino
acid sequences. The PDB files contain comprehensive and
rich three-dimensional structural information, which can
help us predict the protein’s solubility in subsequent steps.

Feature Extraction
Node Feature SeqVec(Heinzinger et al. 2019) is a pre-
trained model used to generate protein/residue representa-
tions. It is trained on the UniRef50 dataset using the lan-
guage model ELMo(Peters et al. 2018). Traditional natural
language processing models do not focus on biological con-
text information, while SeqVec utilizes a large amount of un-
labeled data from the UniRef50 database to capture biophys-
ical properties. The trained model can directly obtain rep-
resentations with biophysical features based on amino acid
sequences, which significantly enhances the performance
of downstream tasks. Given the protein’s raw sequences,
we utilizes the SeqVec(Heinzinger et al. 2019) to output
residue-level sequence representations. And each protein
obtains an m × 1024 dimensional representation, where m
represents the number of residues in the protein. To ensure
the consistency of training, we perform padding operations
on the obtained representations, resulting in 3140 L× 1024
dimensional features, where L is a hyperparameter.

Edge Feature Edge feature are represented as a contact
map, which is also a matrix consisting of 0s and 1s. This
definition is essentially similar to an adjacency matrix and

reflects the connectivity between protein residues. If the dis-
tance between two residues is less than this distance, it indi-
cates a connected relationship between them. Otherwise, if
the distance is too large, they are considered unconnected.
The contact map is defined as follows:

Cp,q =

{
1, if δp,q > 8A

0, otherwise
(1)

Note that p and q represent two different residues and
8A is a commonly used distance in the contact map(Song
et al. 2022). The coordinate data in the protein’s three-
dimensional structure PDB file precisely reflects spatial in-
formation. We calculate the Euclidean distance between
residues to obtain a distance matrix namely as contact map.
The contact map has dimensions of m×m, where m repre-
sents the number of residues in the protein. After perform-
ing padding operations on the original contact maps, we get
3140 L× L dimensional features.

Word Frequency Feature It is obvious that Word fre-
quency information is one of the crucial features. An amino
acid sequence consists of 20 letters representing 20 kinds of
amino acids separately and the protein solubility is closely
related to the kind of amino acids. Therefore, we can ex-
tract statistical word frequency features of the 20 letters in
each amino acid sequence. To prevent numerical instability
when inputting the features into a neural network, the word
frequency feature is computed by dividing the count by the
total length of the sequence, rather than just considering the
raw count. The formula for calculating the frequency feature
fi of letter i is as follows:

fi =
Oi

L
(2)

where Oi is the number of occurrences of the letter and L is
the total length of the sequence.

As a result, each amino acid sequence can obtain a 20-
dimensional word frequency feature.

Deep Learning Framework
Graph Convolutional Network The node features and
edge features extracted can be constructed into a graph con-
volutional neural network (GCN). The input data of the
graph convolutional neural network is a graph structure, in
which each node represents a residue in the protein structure
using an implicit vector, and the edge represents the rela-
tionship or connection relationship between nodes, which is
usually represented by the adjacency matrix as contact map.



Through the convolution operations of the contact graph, the
residue representation of each node is convolved with the
contact graph of its neighbor nodes, so as to update the node
representation. A graph convolutional neural network is rep-
resented as follows:

Figure 2: A graph convolutional network composed of
residue representations and a contact map.

Protein Solubility Prediction Network Combined with
graph convolutional network and fully connected network,
we design an accurate protein solubility prediction network
as 3shows. On one hand, the input of amino acid word
frequency feature passes through the fully connected layer
and changes from 20 dimensions to 1024 dimensions. On
the other hand, the graph composed of one-dimensional se-
quence and three-dimensional structure information passes
through three-layer graph convolutional neural network. In
this process, each node constantly updates its own point fea-
tures according to its relationship with its neighbor nodes.
The three layers represent capturing the features of the
neighbor nodes whose reference distance is less than or
equal to 3. The obtained two 1024-dimensional features are
concatenated together to form a 2048-dimensional feature,
passing through the full connection layer for smoothing. Fi-
nally the Sigmoid activation function keeps the solubility re-
sult ranging from 0 to 1.

The input of the neural network is composed of the word
frequency feature (20-dimensional) of an amino acid se-
quence, node feature and edge feature. And the output is
the protein solubility corresponding to the input of amino
acid sequence, the value of which ranges from 0 to 1. Due
to most applications of protein solubility only need to know
whether the protein is soluble or not, past work(Wu and Yu
2021; Chen et al. 2021; Khurana et al. 2018) have classified
it as a classification problem. Therefore, we set the threshold
p as 0.5 to classify whether it is soluble. If the output of sol-
ubility is greater than 0.5, the protein is considered soluble.
Otherwise it is considered that the protein is insoluble.

Experiments
Environmental Setting
We implement a prototype of AlphaSolu by the deep learn-
ing framework PyTorch 1.12.1 with Python 3.8. Hardware
support is shown as Table 2.

CPU Intel(R) Xeon(R) Gold 5122 CPU @ 3.60GHz
GPU NVIDIA GeForce RTX 2080 Ti
CUDA Version 10.2
Operating System Ubuntu 18.04.6
Ubuntu 18.04.6 440.44

Table 2: Environmental setting.

Training and Testing
In order to improve the reliability of solubility prediction,
we use K-fold approach for cross-validation, in which k can
be used as a hyperparameter to adjust. In the current exper-
iment, the value of k is set to 5, that is, the original data is
divided into 5 subsets, one of which will be used as the test
set and the other 4 subsets as the training set. The training
set size is 2512 and the test set size is 628. According to the
original data, the features are extracted and the three features
described above are obtained as the input of neural network.

We set the batch size and learning rate to 16 and 1e-4,
separately. The weight decay is 1e-5 and the total number of
epochs is set to 30. However, we set early stopping whose
patience is 10 to avoid overfitting. Cross entropy loss func-
tion is performed to evaluate the optimization.

Performance Evaluation
Evaluation Metrics We classify the protein solubility pre-
diction into a classification problem. Therefore, for a classi-
fication problem, the most important thing is whether the
predicted value is the same as the true label. Since this is a
binary classification problem, there are only four relation-
ships, that is, 0 is predicted to be 0, 0 is predicted to be 1,
1 is predicted to be 0, 1 is predicted to be 1, and these four
relationships are recorded as TN, FP, FT, TP.

We use metrics including accuracy, precision, recall, F1-
score, AUC, MCC (Matthew’s correlation coefficient) to
evaluate the performance of our framework that are widely
used in past work(Wu and Yu 2021; Khurana et al. 2018;
Chen et al. 2021).

Results To ensure the robustness of our framework, the
experiment of protein solubility prediction is repeated sev-
eral times and the accuracy averaged is 80.90%. In compar-
ison to some state-of-the-art approaches in recent years for
predicting protein solubility, such as GraphSol (Chen et al.
2021) with an accuracy of 78% and EPSOL (Khurana et al.
2018) with an accuracy of 79%, our framework AlphaSolu
demonstrates a significant improvement in accuracy.

We not only consider accuracy as a crucial metric but
also evaluates various other metrics mentioned above. Cor-
responding to 3, the F1-score reaches 0.797, and the AUC
is 0.813. Both metrics reflect the robustness and stability of
the model, indicating that the predictions of protein solu-
bility using our framework are reliable. A comprehensive
comparison of all metrics with advanced protein solubility
prediction approaches is also presented in Table 3, clearly
demonstrating the superior accuracy and reliability of the
proposed framework.

Besides, we use some metrics such as prediction response
time, ease of operation, and code maintainability to evalu-



Figure 3: The protein solubility prediction neural network in AlphaSolu.

Approach ACC Precision Recall F1 AUC MCC

XGboost(Chen and Guestrin 2016) 0.756 0.748 0.690 0.718 0.829 ·
DeepSol(Khurana et al. 2018) 0.763 0.771 0.738 0.695 0.845 0.540
GraphSol(Chen et al. 2021) 0.782 0.790 0.702 0.743 0.873 ·
EPSOL(Wu and Yu 2021) 0.790 0.787 0.787 0.787 · 0.580

Our 0.809 0.752 0.849 0.797 0.813 0.622

Table 3: The correctness compared with other protein solubility prediction approaches.

ate AlphaSolu, as illustrated in Table 4. By comparing with
other protein solubility approaches presented in Table 4, Al-
phaSolu demonstrates superior performance in terms of the
time required for predicting compared to EPSOL(Wu and Yu
2021) and GraphSol(Chen et al. 2021), which have a consid-
erable amount of features, resulting in a longer processing
time. Additionally, our framework give an visual interface
leading a easy way to use.

Approaches Time(s) Visual Interface Maintainability

Our 3.24(±1.23)
√ √

EPSOL 3.98(±2.47) ×
√

GraphSol 10.62(±1.59) ×
√

Table 4: The efficiency and maintainability compared with
other protein solubility prediction approaches.

Conclusion
With the continuous advancement of genetic engineering,
the expression of heterologous proteins has found applica-
tions in various fields. However, poorly soluble proteins may
form insoluble aggregates or inclusion bodies, leading to a
decrease in the yield of the target protein. Predicting pro-
tein solubility in advance can facilitate large-scale screen-
ing and production in industries, thereby enhancing effi-
ciency. Therefore, our framework developed a protein sol-
ubility prediction that outperforms other state-of-the-art ap-
proaches.

We use amino acid sequences and corresponding solu-
bility in the eSOL database as training and testing sets.
Experiments indicate that the proposed three-dimensional

structure-based protein solubility prediction framework has
an excellent performance. It achieves higher accuracy,
shorter prediction times, and provides users with a visual
interface for facilitating user-friendly interactions.

However, in three-dimensional structure PDB files, be-
sides atomic coordinates, there is still a wealth of infor-
mation like bond angles, bond lengths, charges, and so on.
Therefore, we plan to further explore and analyze these in-
formation through feature engineering to predict protein sol-
ubility.
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